This page provides comprehensive documentation for all
functions used in the data processing, individual analysis, and
population analysis tutorials. Functions are organized by workflow stage
or package.
Workflow Stage | Primary Functions | Purpose |
---|---|---|
Data Organization | organize_bird_files() ,
create_npm_object() |
Structure raw data and initialize analysis object |
Audio Processing | compute_wav_durations() ,
create_audio_clip() ,
create_template() ,
detect_template() ,
find_motif() ,
find_bout() |
Process song recordings and identify vocal elements |
Photometry Processing | read_photometry() ,
process_photometry() , sync_epoch() ,
find_transients() , filter_peaks() |
Process fiber photometry signals and detect neural events |
Individual Analysis | create_segment_table() ,
analyze_timing_shift() ,
analyze_amplitude_shift() ,
analyze_directional_cH() |
Analyze individual animal patterns |
Population Analysis | combine_animal_results() ,
analyze_td_metrics() ,
analyze_amplitude_metrics() ,
analyze_cH_metrics() |
Combine and analyze population-level patterns |
Visualization | plot_heatmap() ,
plot_transient_raster() , plot_td_panel() ,
plot_amplitude_panel() , plot_cH_panel() |
Create figures and visualizations |
The ASAP (Automated Song Analysis Pipeline) package provides functions for processing audio recordings and analyzing vocal behavior.
compute_wav_durations()
- Calculates
the total duration of all audio files.
create_audio_clip()
- Extracts specific
time segments for manual template selection.
indices
,
start_time
, end_time
,
clip_names
create_template()
- Defines a spectral
template for song syllable detection.
template_name
,
clip_name
, start_time
, end_time
,
freq_min
, freq_max
detect_template()
- Finds all
occurrences of the template across recordings.
template_name
,
day
, indices
, proximity_window
,
threshold
find_motif()
- Identifies repeated
sequences of syllables (vocal motifs).
template_name
,
pre_time
, lag_time
find_bout()
- Groups individual vocal
elements into singing bouts.
min_duration
,
summary
, gap_duration
plot_heatmap()
- Visualizes motif or
bout structure and patterns across development.
segment_type
,
balanced
, window
, contrast
,
reference_lines
The VNS (VocalNeuroSync) package provides functions for processing fiber photometry data and analyzing neural-vocal synchronization.
organize_bird_files()
- Organizes raw
data files from individual animals into a structured format suitable for
analysis.
root_dir
,
bird_id
, dob
, output_dir
,
file_prefixes
, file_extensions
create_npm_object()
- Creates the main
analysis object containing both photometry and audio data with
metadata.
base_path
,
labels
, imageArea
, sensor
,
fps
, numChannel
read_photometry()
- Imports raw
photometry data.
qc_photometry()
- Performs optional
quality control checks.
process_photometry()
- Applies baseline
correction and processes the signal.
by_epoch
,
epoch_window_quantile
sync_epoch()
- Synchronizes photometry
signals across epochs.
scale
,
data_type
, by_peak_value
find_transients()
- Detects dopamine
transients using peak detection algorithms.
method
,
lag
, threshold
, influence
filter_peaks()
- Measures peak
amplitude of dopamine signals within epochs.
create_segment_table()
- Creates
segmented data tables for temporal analysis.
region
,
window
, n_segments
, min_epoch
,
method
, data_type
analyze_timing_shift()
- Analyzes
temporal shifts in dopamine transients.
method
,
segment_duration_ms
, bandwidth
,
highlight_position
analyze_amplitude_shift()
- Analyzes
amplitude shifts between early and late segments.
output
,
segment_duration_ms
, segments_per_label
,
label_pair
analyze_amplitude_redistribution()
-
Analyzes amplitude redistribution across segment pairs.
output
,
segment_duration_ms
, segments_per_label
,
step_size
analyze_directional_cH()
- Analyzes
directional conditional entropy between segments.
source_seg
,
target_seg
, output
analyze_directional_info_flow()
-
Analyzes directional information flow across development.
step_size
combine_animal_results()
- Combines
individual animal results into population datasets.
analyze_td_metrics()
- Performs linear
mixed-effects modeling on temporal difference metrics.
analyze_amplitude_metrics()
- Performs
linear mixed-effects modeling on amplitude metrics.
analyze_cH_metrics()
- Performs linear
mixed-effects modeling on conditional entropy metrics.
analyze_within_window_trends()
-
Analyzes trends within sliding temporal windows.
test_method
,
window_size
, plot_results
analyze_within_window_trends2()
-
Alternative within-window analysis with mixed-effects models.
model
,
test_method
, window_size
,
plot_results
analyze_within_window_info_flow()
-
Analyzes information flow within sliding windows.
model
,
window_size
, plot_results
plot_transient_raster()
- Creates
raster plots of dopamine transients.
method
,
window
, region
, ref_line
,
point_size
, jitter_height
plot_td_panel()
- Creates panel plots
for temporal difference metrics.
show_title
,
show_annotations
plot_amplitude_panel()
- Creates panel
plots for amplitude metrics.
show_title
,
show_annotations
plot_cH_panel()
- Creates panel plots
for conditional entropy metrics.
plot_paired_metric_panel()
- Creates
paired comparison plots for metrics.
window_size
,
metric_order
, ncol
plot_paired_metric_panel2()
-
Alternative paired comparison plots.
window_size
,
ncol
# Install ASAP
remotes::install_github("LXiao06/ASAP")
# Or install local version
remotes::install_local("pkgs/ASAP_0.3.3.tar.gz", dependencies = TRUE)
# Install VNS
remotes::install_github("LXiao06/VocalNeuroSync")
# Or install local version
remotes::install_local("pkgs/VNS_0.0.0.9000.tar.gz", dependencies = TRUE)