
Run Principal Component Analysis
run_pca.Rd
A generic function to perform PCA with support for multiple methods and large-scale data processing.
Usage
run_pca(x, ...)
# Default S3 method
run_pca(
x,
method = c("irlba", "base", "parallel"),
n_components = 50,
n_cores = NULL,
diagnostic_plots = TRUE,
output_scores = TRUE,
scale_scores = FALSE,
...
)
# S3 method for class 'Sap'
run_pca(
x,
segment_type = c("motifs", "syllables", "bouts", "segments"),
data_type = "traj_mat",
method = c("irlba", "base", "parallel"),
n_components = 50,
n_cores = NULL,
diagnostic_plots = TRUE,
scale_scores = FALSE,
verbose = TRUE,
...
)
Arguments
- x
An object to analyze, either a matrix/data frame or a SAP object
- ...
Additional arguments passed to specific methods
- method
PCA method ('irlba', 'base', or 'parallel')
- n_components
Number of principal components
- n_cores
Number of cores for parallel processing
- diagnostic_plots
Whether to create diagnostic plots
- output_scores
Whether to return PC scores
- scale_scores
Whether to scale PC scores
- segment_type
For SAP objects: Type of segments to analyze ('motifs', 'syllables', 'bouts', 'segments')
- data_type
For SAP objects: Type of data to analyze
- verbose
For SAP objects: Whether to print progress
Value
For default method: PCA results or PC scores matrix For SAP objects: Updated SAP object with PCA results stored in features slot